
Partial derivative 

In mathematics, a partial derivative of a function of several variables is its derivative 
with respect to one of those variables with the others held constant (as opposed to the 
total derivative, in which all variables are allowed to vary). Partial derivatives are 
useful in vector calculus and differential geometry. 
The partial derivative of a function f with respect to the variable x is written as fx, ∂xf, 
or ∂f/∂x. The partial-derivative symbol ∂ is a rounded letter, distinguished from the 
straight d of total-derivative notation. The notation was introduced by Legendre and 
gained general acceptance after its reintroduction by Jacobi. 
 
In general, the partial derivative of a function f(x1,...,xn) in the direction xi at the point 
(a1,...,an) is defined to be: 

 
∂ is a rounded d called the partial derivative symbol. To distinguish it from the letter d, 
∂ is sometimes pronounced "der", "del", "dah", or "partial" instead of "dee". 
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Gradient 

The gradient (or gradient vector field) of a scalar function f(x) with respect to a vector 

variable is denoted by or where (the nabla symbol) 

denotes the vector differential operator, del. The notation is also used for 

the gradient. The gradient of f is defined to be the vector field whose components are 

the partial derivatives of f. That is: 

 

(from Wikipedia, modified by kameda 2008/09/08) 



Lagrange multipliers 

From Wikipedia, the free encyclopedia (rearranged by kameda, 2008/09/08) 

   
                 Fig. 1                                    Fig. 2 

Fig. 1. Drawn in red is the locus (contour) of points satisfying the constraint g(x,y) = c. Drawn in 

blue are contours of f. Arrows represent the gradient, which points in a direction normal to the 

contour. 

Fig. 2. Same problem as above as three-dimensional visualization, assuming that we want to 

maximize f(x,y). 

In mathematical optimization problems, the method of Lagrange multipliers, named after Joseph 

Louis Lagrange, is a method for finding the extrema of a function of several variables subject to 

one or more constraints; it is the basic tool in nonlinear constrained optimization. 

Simply put, the technique is able to determine where on a particular set of points (such as a circle, 

sphere, or plane) a particular function is the smallest (or largest). 

More formally, Lagrange multipliers compute the stationary points of the constrained function. By 

Fermat's theorem, extrema occur either at these points, or on the boundary, or at points where 

the function is not differentiable. 

It reduces finding stationary points of a constrained function in n variables with k constraints to 

finding stationary points of an unconstrained function in n+k variables. The method introduces a 

new unknown scalar variable (called the Lagrange multiplier) for each constraint, and defines a 

new function (called the Lagrangian) in terms of the original function, the constraints, and the 

Lagrange multipliers. 

Introduction 

Consider a two-dimensional case. Suppose we have a function f(x,y) we wish to maximize or 

minimize subject to the constraint 



 

where c is a constant. We can visualize contours of f given by 

 

for various values of dn, and the contour of g given by g(x,y) = c. 

Suppose we walk along the contour line with g = c. In general the contour lines of f and g may be 

distinct, so traversing the contour line for g = c could intersect with or cross the contour lines of 

f. This is equivalent to saying that while moving along the contour line for g = c the value of f can 

vary. Only when the contour line for g = c touches contour lines of f tangentially, we do not 

increase or decrease the value of f - that is, when the contour lines touch but do not cross. 

This occurs exactly when the tangential component of the total derivative vanishes: , 

which is at the constrained stationary points of f (which include the constrained local extrema, 

assuming f is differentiable). Computationally, this is when the gradient of f is normal to the 

constraint(s): when for some scalar λ (where is the gradient). Note that the 

constant λ is required because, even though the directions of both gradient vectors are equal, 

the magnitudes of the gradient vectors are most likely not equal. 

A familiar example can be obtained from weather maps, with their contour lines for temperature 

and pressure: the constrained extrema will occur where the superposed maps show touching lines 

(isopleths). 

Geometrically we translate the tangency condition to saying that the gradients of f and g are 

parallel vectors at the maximum, since the gradients are always normal to the contour lines. Thus 

we want points (x,y) where g(x,y) = c and 

, 

where 

 

To incorporate these conditions into one equation, we introduce an auxiliary function 

 

and solve 



. 

Justification 

As discussed above, we are looking for stationary points of f seen while travelling on the level set 

g(x,y) = c. This occurs just when the gradient of f has no component tangential to the level sets of 

g. This condition is equivalent to  for some λ. Stationary 

points (x,y,λ) of F also satisfy g(x,y) = c as can be seen by considering the derivative with 

respect to λ. 

Caveat: extrema versus stationary points 

Be aware that the solutions are the stationary points of the Lagrangian F, and are saddle points: 

they are not necessarily extrema of F. F is unbounded: given a point (x,y) that doesn't lie on the 

constraint, letting makes F arbitrarily large or small. However, under certain stronger 

assumptions, as we shall see below, the strong Lagrangian principle holds, which states that the 

maxima of f maximize the Lagrangian globally. 

A more general formulation: The weak Lagrangian principle 

Denote the objective function by and let the constraints be given by , perhaps 

by moving constants to the left, as in . The domain of f should be an open 

set containing all points satisfying the constraints. Furthermore, f and the gk must have 

continuous first partial derivatives and the gradients of the gk must not be zero on the domain.[1] 

Now, define the Lagrangian, Λ, as 

 
k is an index for variables and functions associated with a particular constraint, k. 

without a subscript indicates the vector with elements , which are taken to be 

independent variables. 

Observe that both the optimization criteria and constraints gk(x) are compactly encoded as 

stationary points of the Lagrangian: 

 if and only if  

 means to take the gradient only with respect to each element in the vector , 

instead of all variables. 

and 



 implies gk = 0. 

Collectively, the stationary points of the Lagrangian, 

, 

give a number of unique equations totaling the length of plus the length of . 

Interpretation of λi 

Often the Lagrange multipliers have an interpretation as some salient quantity of interest. To see 

why this might be the case, observe that: 

 

So, λk is the rate of change of the quantity being optimized as a function of the constraint 

variable. As examples, in Lagrangian mechanics the equations of motion are derived by finding 

stationary points of the action, the time integral of the difference between kinetic and potential 

energy. Thus, the force on a particle due to a scalar potential, , can be interpreted 

as a Lagrange multiplier determining the change in action (transfer of potential to kinetic energy) 

following a variation in the particle's constrained trajectory. In economics, the optimal profit to a 

player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the 

value of relaxing a given constraint (e.g. through bribery or other means). 

Examples 

Very simple example 

Suppose you wish to maximize f(x,y) = x + y subject to the constraint x2 + y2 = 1. The constraint is 

the unit circle, and the level sets of f  are diagonal lines (with slope -1). Then, where is the 

maximum and how much is it? 



 
Fig. 3. Illustration of the constrained optimization problem. 

Simple example 

Suppose you want to find the maximum values for 

 

with the condition that the x and y coordinates lie on the circle around the origin with radius √3, 

that is, 

 
 

Again, where is the maximum and how much is it? 

 

 
Fig. 4. Illustration of the constrained optimization problem. 



Suppose you want to find the maximum values for 

 

with the condition that the x and y coordinates lie on the circle around the origin with radius √3, 

that is, 

 

Again, where is the maximum and how much is it? 

Example: entropy 

Suppose we wish to find the discrete probability distribution with maximal information entropy. 

Then 

 

Of course, the sum of these probabilities equals 1, so our constraint is g(p) = 1 with 

 

We can use Lagrange multipliers to find the point of maximum entropy (depending on the 

probabilities).  
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Support vector machines (SVMs) are a set of related supervised learning methods used 
for classification and regression. Viewing input data as two sets of vectors in an 
n-dimensional space, an SVM will construct a separating hyperplane in that space, one 
which maximizes the margin between the two data sets. To calculate the margin, two 
parallel hyperplanes are constructed, one on each side of the separating hyperplane, 
which are "pushed up against" the two data sets. Intuitively, a good separation is 
achieved by the hyperplane that has the largest distance to the neighboring datapoints 
of both classes, since in general the larger the margin the better the generalization error 
of the classifier. 
 

Motivation 
 
H3 doesn't separate the 2 classes. H1 does, with 
a small margin and H2 with the maximum 
margin. 

Classifying data is a common need in machine 

learning. Suppose some given data points each 

belong to one of two classes, and the goal is to 

decide which class a new data point will be in. In 

the case of support vector machines, a data 

point is viewed as a p-dimensional vector (a list of p numbers), and we want to know 

whether we can separate such points with a p − 1-dimensional hyperplane. This is 

called a linear classifier. There are many hyperplanes that might classify the data. 

However, we are additionally interested in finding out if we can achieve maximum 

separation (margin) between the two classes. By this we mean that we pick the 

hyperplane so that the distance from the hyperplane to the nearest data point is 

maximized. That is to say that the nearest distance between a point in one separated 

hyperplane and a point in the other separated hyperplane is maximized. Now, if such a 

hyperplane exists, it is clearly of interest and is known as the maximum-margin 

hyperplane and such a linear classifier is known as a maximum margin classifier. 



Formalization 

We are given some training data, a set of points of the form 

 

where the ci is either 1 or −1, indicating the class to which the point belongs. Each 

is a p-dimensional real vector. We want to give the maximum-margin hyperplane 

which divides the points having ci = 1 from those having ci = − 1. Any hyperplane can 

be written as the set of points satisfying 

Maximum-margin hyperplane and margins for a 
SVM trained with samples from two classes. 
Samples on the margin are called the support 
vectors. 

 

The vector is a normal vector: it is 

perpendicular to the hyperplane. The parameter 

 determines the offset of the hyperplane from 

the origin along the normal vector . 

We want to choose the  and b to maximize the margin, or distance between the 

parallel hyperplanes that are as far apart as possible while still separating the data. 

These hyperplanes can be described by the equations 

 and  

Note that if the training data are linearly separable, we can select the two hyperplanes 

of the margin in a way that there are no points between them and then try to maximize 

their distance. By using geometry, we find the distance between these two 

hyperplanes is , so we want to minimize . As we also have to prevent data 

points falling into the margin, we add the following constraint: for each i either 

 for  for the first class or 



for  of the second. 

This can be rewritten as: 

 

We can put this together to get the optimization problem: 

choose to minimize  

subject to  

Primal Form 

The optimization problem presented in the preceding section is hard because it 

depends on the absolute value of |w|. The reason being that it is a non-convex 

optimization problem, which are known to be much more difficult to solve than convex 

optimization problems. Fortunately it is possible to alter the equation by substituting 

||w|| with without changing the solution (the minimum of the original and the 

modified equation have the same w and b). This is a quadratic programming (QP) 

optimization problem. More clearly, 

minimize , subject to . 

The factor of 1/2 is used for mathematical convenience. This problem can now be 

solved by standard quadratic programming techniques and programs. 

Dual Form 

Writing the classification rule in its unconstrained dual form reveals that the maximum 

margin hyperplane and therefore the classification task is only a function of the 

support vectors, the training data that lie on the margin. The dual of the SVM can be 

shown to be: 



 subject to , and 

 

where the α terms constitute a dual representation for the weight vector in terms of 

the training set: 

 
 

Extensions to the linear SVM 

Soft margin 

In 1995, Corinna Cortes and Vladimir Vapnik suggested a modified maximum margin 

idea that allows for mislabeled examples.[2] If there exists no hyperplane that can split 

the "yes" and "no" examples, the Soft Margin method will choose a hyperplane that 

splits the examples as cleanly as possible, while still maximizing the distance to the 

nearest cleanly split examples. This work popularized the expression Support Vector 

Machine or SVM. The method introduces slack variables, ξi, which measure the 

degree of misclassification of the datum xi 

. 

The objective function is then increased by a function which penalises non-zero ξi, 

and the optimisation becomes a trade off between a large margin, and a small error 

penalty. If the penalty function is linear, the equation (3) now transforms to 

 

This constraint in (2) along with the objective of minimizing |w| can be solved using 

Lagrange multipliers. The key advantage of a linear penalty function is that the slack 



variables vanish from the dual problem, with the constant C appearing only as an 

additional constraint on the Lagrange multipliers. Non-linear penalty functions have 

been used, particularly to reduce the effect of outliers on the classifier, but unless 

care is taken, the problem becomes non-convex, and thus it is considerably more 

difficult to find a global solution. 

Non-linear classification 

The original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963 was a 

linear classifier. However, in 1992, Bernhard Boser, Isabelle Guyon and Vapnik 

suggested a way to create non-linear classifiers by applying the kernel trick (originally 

proposed by Aizerman et al..[3] ) to maximum-margin hyperplanes.[4] The resulting 

algorithm is formally similar, except that every dot product is replaced by a non-linear 

kernel function. This allows the algorithm to fit the maximum-margin hyperplane in the 

transformed feature space. The transformation may be non-linear and the 

transformed space high dimensional; thus though the classifier is a hyperplane in the 

high-dimensional feature space it may be non-linear in the original input space. 

If the kernel used is a Gaussian radial basis function, the corresponding feature space 

is a Hilbert space of infinite dimension. Maximum margin classifiers are well regularized, 

so the infinite dimension does not spoil the results. Some common kernels include, 

• Polynomial (homogeneous):  

• Polynomial (inhomogeneous):  

• Radial Basis Function: , for γ > 0 

• Gaussian Radial basis function:  

• Sigmoid: , for some (not every) κ > 0 and c < 

0 
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